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Abstract
A particular approach based on the concept of flexible topological descriptors,the so

called “Optimization of  Correlation Weights of Local Graph Invariants”,is applied to
model the octanol/water partition coefficient of  a representative setof 62 alcohols.
Predictions are quite satisfactory and the numerical data improve previous results based
on the application of a novel atomic-level-based AI topological descriptor. Some possible
further extensions of the method are pointed out.

Resumen
Se aplica una aproximación particular basada en el concepto de descriptores topológicos

flexibles, la denominada “Optimización de los Pesos de Correlación de Invariantes de
Grafos Locales” al modelado del coeficiente de  partición octanol/agua para un conjunto
representativos de 2 alcoholes. Las  predicciones son bastante satisfactorias y los resultados
numéricos constituyen  una mejora en resultados previos basados en la aplicación de un
nuevo  descriptor topológico, el denominado descriptor de nivel atómico de base AI.
Finalmente, se destacan algunas posibles extensiones del método.

Introduction
The progress in computer technology during the last 25 years has enabled the performance

of ever more precise quantum mechanical calculations related to structure and interactions of
chemical compounds. However, the qualitative models relating electronic structure to molecular
geometry have not progressed at the same pace. There is a continuing need in chemistry for
simple concepts and qualitatively clear pictures that be also quantitatively comparable to ab
initio quantum chemical calculations. Topological methods, and, more specifically, graph theory
as s fixed-point topology, provide in principle a chance to fill this gap [1]. With more than 100
years of application to chemistry, graph theory has proven to be of vital importance as the most
natural language of chemistry. The explosive development of chemical graph theory during the
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last 30 years has increasingly overlapped with quantum chemistry. Besides contributing to the
solution of various problems in theoretical chemistry, this development indicates that topology is
an underlying principle that explains the success of quantum mechanics an goes beyond it, thus
promising to bear more fruit in the future.

Most applications of data analysis involve attempts to fit a model, usually quantitative, to a
set of experimental measurements or observations. The reasons for fitting such models are varied.
For example, the model may be purely empirical and be required in order to make predictions
for new experiments. On the other hand, the model may be based on some theory or law, and an
evaluation of the fit of the data to the model may be used to give insight into the process underlying
the observations made. In some cases the ability to fit a model to a set of data successfully may
provide the inspiration to formulate some new hypothesis. The type of model which may be fitted
to any set of data depends not only on the nature of the data but also on the intended use of the
model. In many applications a model is meant to be used predictively, but the predictions need
not necessarily be quantitative [2].

The majority of molecular discoveries today are the result of an iterative, three-phase
cycle of design, synthesis and test. Analysis of the results from one iteration provides information
and knowledge that enables the next cycle to be initiated and further improvements to be achieved.
A common feature of this analysis stage is the construction of some form of model which enables
the observed activity or properties to be related to the molecular structure. Many types of models
are possible, with mathematical and statistical models being particularly common. Such models
are often referred to as Quantitative Structure-Activity Relationships (QSAR) or Quantitative
Structure-Property Relationships (QSPR).

The basic principle of QSAR/QSPR theory is the mathematical relationship

p = f(s) (1)

where p is any biological activity or physicochemical property, s is a set of variables associated to
the molecular structure (they are called molecular descriptors) and f is an arbitrary function.
Molecular descriptors are numerical values that characterize properties of molecules. For example,
they may represent the physicochemical properties of a molecule or they may be values that are
derived by applying algorithmic techniques to the molecular structure. Many different molecular
descriptors have been described and used for a wide variety of purposes. They vary in the
complexity of the information they encode and in the time required to calculate them.

The biochemical interactions in the living cell occur in both aqueous and hydrophobic
media (i.e. coupling to an active site of an enzyme, transport through a biomembrane) [3]. In
addition, other pharmaco-kinetic properties are related to the difference in solubility of bioactive
molecules in aqueous and organic solvents. Hence, it is important to account properly for the
solute interactions in both aqueous and organic media. The partition of chemical compounds
between organic and aqueous phases is often modeled by the octanol/water partition coefficient
(log P) [4], because it is assumed that octanol may reflect lipid tissues in living organisms. Log P
has been successfully related to bioconcentration factor, soil and sediment sorbtion partition
coefficients and to toxicities of organic chemicals towards aquatic organisms. Direct measurement
of P by means of the shake-flask procedure yields only reliable data for chemicals with log P less
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than 4-5 [5]. P of more hydrophobic substances can be measured either by the generator-
column-method or by the slow-stirring technique. In addition to these direct approaches to the
determination of P, several other methods were employed: (1) calculation based on molecular
fragments additivity [6,7], (2) correlation with capacity factors on reversed-phase HPLC, (3)
correlation with molecular descriptors (volume, surface area, molar refraction, parachor, molecular
weight) [8], and (4) correlation with molar volume and solvachromic parameters.

The partitioning of a hydrophobic solute between octanol and water is due to the difference
between the interactions that the solute is experiencing in water versus octanol. Hence, the
relationship between water solubility and P [6] has been studied extensively over the last two
decades [9]. Examples of such correlation have been published for halogenated benzene, aromatic
hydrocarbons, aldehydes, esters and alcohols. However, due to experimental difficulties, few
accurate data for compounds with log P greater than 6 have been reported, which limits the use
of such correlation for prediction purposes.

In a series of rather recent studies, Ren [10-12] derived a new atom-type AI topological
indices from the adjacency matrix and distance matrix of a graph to model six properties of
alkanes. Further, high quality models were developed to correlate four physical properties of a
small data of alcohols and three physical properties of a mixed set of compounds containing
alkanes and alcohols with their structures. The atom-type AI indices offer the possibility of
understanding the role of individual groups in molecules. In a latter paper, Ren [13] have illustrated
the application of the novel AI indices to a wide range of physical properties and especially
biological activities that depend on the strength of intermolecular interactions such as hydrogen
bonding interactions of –OH moieties in molecules. The author calculated the octanol/water
partition for 62 alcohols via a multiple linear regression to develop the structure-property model
based on the modified Xu (X

u
m) and AI indices. The best two-parameter model show that

although X
u
m makes a major contribution to octanol/water partition, which indicates the additive

behavior of the property, other atomic  groups, especially –OH groups, are also important factors
influencing the values of this property.

Since there are other alternatives to predict log P within the frame of the QSPR theory, we
have deemed sensible to look for ways to improve these predictions. An interesting and very
promising option is the approach based upon the correlation weights of local graph invariants
[14-16], which has proved to be a quite suitable tool to calculate thermodynamic properties for
a wide variety of molecular species [17-22].

The paper is organized as follows:  the next section deals with the presentation of the
method and the mathematical algorithm applied in this study. Then, we display the set of alcohols
together with available experimental data and previous theoretical prediction of partition coefficient
plus the results derived from the present approach and they are discussed in a comparative
fashion. Finally, we analyze the main conclusions derived from this study and point out some
possible further extensions of this calculation method.

Method
Molecular descriptors employed in QSPR theory can be divided into two broad categories:

fixes variable descriptors. Fixed descriptors are molecular invariants that can be numerically
computed once a molecule is selected. This is the case with the great majority of proposed
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hundreds pf descriptors. Variable descriptors involve one or more variables, the values of which
are selected during the regression process. Hence, a variable descriptor can either be a function
of a single variable or function of several variables.

In contrast to the traditional molecular indices, which one can calculate after selecting  a set
of compounds to be studied and then proceed with statistical analysis, the variable indices are
initially non-numerical. Therefore, they cannot be calculated in advance for the set of compounds.
Instead, one starts with an arbitrary set of values for the yet undetermined variables and, in an
iterative procedure, varies these initial values seeking values that will produce the smallest standard
error of the property under consideration. It is clear that the use of variable (they are also called
flexible) descriptors can only improve correlations over the use of simple indices because, if all
the variables took on a zero value (which is very unlikely), we would obtain the results that
coincide with the results based on the traditional molecular indices.

Among the several existing options to employ flexible molecular descriptors, the optimization
of Correlation Weights of Local Graph Invariants (OCWLI) has shown to be a  suitable possibility
to employ in QSPR theory and results have been very encouraging [14-22]. The method has
been described in detail in the current literature so that we do not deem necessary to repeat it
here. The interested reader can consult the pertinent bibliography [14-22].

Regarding the choice of the f function in relationship (1), we have pointed out that it is
arbitrary. The simplest mathematical structure is the linear one, i.e.

p = A + Bs, (2)

where A and B are two numerical coefficients to be determined by a standard least square
criterion and s stands for a single molecular descriptor. In this work we have resorted to this
linear relationship since it provides good enough results, so that the employment of other more
complex formulae would not improved significantly the final fittings.  Mathematical software
employed here is the well known MATHEMATICA® computer program [23].

The total molecular set of 62 alcohols is the same as that employed by Ren [13]. We have
employed two numerical approaches: a) The calculations were made on the complete set, and b)
The calculations were made in two subsets. In this second case, we have divided the complete
set into two subsets for calculations: a training set and a test set comprising 31 alcohols each
one. In order to test whether the choice of molecules in each set influences the final results, we
have performed several choices, and we have seen they furnish practically the same results, so
that we report data for a representative partition. Obviously, results for the second set are true
predictions.

Results And Discussion
In Table 1 we present the main statistical characteristics of the OCWLI models.
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Table 1. Statistical characteristics of the OCWLI models

Test set Complete set

n R S F n R s F

31 0.9893 0.222 1329 62 0.9914 0.214 3432
31 0.9893 0.222 1329 62 0.9914 0.214 3432
31 0.9893 0.222 1329 62 0.9914 0.214 3432
31 0.9970 0.133 4747 62 0.9973 0.124 10989
31 0.9970 0.133 4747 62 0.9973 0.124 10985
31 0.9969 0.134 4686 62 0.9973 0.125 10908
31 0.9953 0.190 3077 62 0.9966 0.148 8798
31 0.9957 0.178 3388 62 0.9969 0.141 9551
31 0.9955 0.187 3196 62 0.9967 0.146 9014

LIs denotes local LFFG invariants

NLIs denotes the number of parameters of the OCW

EC0, EC1, EC2 are Morgan extended connectivity indices [24] of zero, first and second
order, respectively.

The models under consideration to calculate octanol/water partition coefficients are:

log P = A DCW(a,ECX) + B (3)

DCW(a,ECX)  =   Σ [ CW(a) CW(ECX) ] (4)

In Tables 2-4 we display the CW data for the three probes.

Table 2. Numerical values of the CWs on DCW(a,EC0)

LHFG invariant CWs of probe 1 CWs of probe 2 CWs of probe 3

C      2.393      2.599      2.393

H      2.351      2.488      2.295

O      3.261      2.351      2.433

0001      2.487      2.613      2.874

0002      2.730      2.591      3.011

0004      2.426      2.334      2.426
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Table 3. Numerical values of the CWs on DCW(a,EC1)

LHFG invariant CWs of probe 1 CWs of probe 2 CWs of probe 3

C 2.091 2.048 2.281
H 1.114 0.587 0.500
O 6.192 5.108 6.192

0002 6.192 6.811 6.192
0004 0.525 0.997 0.637
0005 6.192 5.108 7.430
0007 0.912 0.775 0.812
0008 1.851 1.771 1.418
0010 1.238 1.069 1.154
0011 1.697 1.624 1.379
0013 1.353 1.175 1.336
0014 0.550 0.575 0.537
0016 1.287 1.113 1.364

The final fitting equations based on  OCWLI for the octanol/water partition coefficient
are the following

log P = 0.03137 DCW(a,ec0) – 2.268 (5)

log P = 0.1422 DCW(a,ec1) – 7.954 (6)

log P = 0.2000 DCW(a,ec2) –  3.127  (7)

Table 4. Numerical values of the CWs on DCW(a,EC2)

LHFG invariant CWs of probe 1 CWs of probe 2 CWs of probe 3

C      0.987      1.076      1.532
H      0.697      0.475      0.525
O      2.151      1.861      2.228

0005      8.916      4.300     18.488
0007      0.912      0.887      0.825
0008      1.617      1.628      1.474
0010      1.125      1.170      1.113
0011      1.603      1.360      1.362
0013      1.172      1.317      1.222
0016      0.475      0.575      0.512
0020      0.637      0.812      0.662
0022      1.263      1.303      1.221
0023      0.825      0.898      0.762
0025      0.991      1.069      1.016
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0026      0.775      0.838      0.725
0028      1.078      1.098      1.073
0029      0.898      0.875      0.787
0031      0.941      1.148      0.991
0032      0.362      0.525      0.425
0034      1.805      1.717      1.591
0035      1.869      1.611      1.451

Calculations with Eqs. (5) – (7) are displayed in Tables 5 – 10.

Table 5. Log P Model based on DCW(a,EC0) – training set.

n  Molecule  DCW exp. calc. exp.-calc.

1 ethanol 55.595 -0.31 -0.52  0.21
2 2-propanol 73.094  0.05  0.03  0.03
3 2-methyl-1-propanol 90.594  0.65  0.57  0.08
4 1-pentanol 108.093  1.40  1.12  0.28
5 2-pentanol 108.093  1.14  1.12  0.02
6 3-pentanol 108.093  1.14  1.12  0.02
7 2-methyl-2-butanol 108.093  0.89  1.12 -0.23
8 1-hexanol 125.592  2.03  1.67  0.36
9 3-hexanol 125.592  1.61  1.67 -0.06
10 2-ethyl-1-butanol 125.592  1.78  1.67  0.11
11 4-methyl-2-pentanol 125.592  1.67  1.67  0.00
12 3,3-dimethyl-1-butanol 125.592  1.57  1.67 -0.10
13 2,2-dimethyl-1-butanol 125.592  1.57  1.67 -0.10
14 3,3-dimethyl-2-butanol 125.592  1.19  1.67 -0.48
15 1-heptanol 143.091  2.34  2.22  0.12
16 3-heptanol 143.091  2.31  2.22  0.09
17 2,2-dimethyl-1-pentanol 143.091  2.39  2.22  0.17
18 4,4-dimethyl-1-pentanol 143.091  2.39  2.22  0.17
19 2,4-dimethyl-1-pentanol 143.091  2.19  2.22 -0.03
20 2,4-methyl-2-pentanol 143.091  1.67  2.22 -0.55
21 2,4-dimethyl-3-pentanol 143.091  2.31  2.22  0.09
22 2,3-dimethyl-3-pentanol 143.091  1.67  2.22  0.55
23 2,2-dimethyl-3-pentanol 143.091  2.27  2.22  0.05
24 3-nonanol 178.090  3.36  3.32  0.04
25 4-nonanol 178.090  3.36  3.32  0.04
26 5-nonanol 178.090  3.36  3.32  0.04
27 1-decanol 195.589  4.01  3.87  0.14
28 1-undecanol 213.089  4.42  4.42  0.00
29 1-tetradecanol 265.586  6.11  6.06  0.05
30 1-pentadecanol 283.086  6.64  6.61  0.03
31 1-hexadecanol 300.585  7.17  7.16  0.01
Average absolute deviation =  0.14

Table 4 continuing
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Table 6. Log P Model based on DCW(a,EC0) – test set.

n Molecule DCW exp. calc. exp.-calc.

1 1-propanol 73.094 0.34 0.03  0.32

2 1-butanol 90.594 0.84 0.57  0.27

3 2-butanol 90.594 0.61 0.57  0.04

4 2-methyl-2-propanol 90.594 0.37 0.57 -0.20

5 3-methyl-1-butanol 108.093 1.42 1.12  0.30

6 2-methyl-1-butanol 108.093 1.14 1.12  0.02

7 3-methyl-2-butanol 108.093 1.14 1.12  0.02

8 2,2-dimethyl-1-propanol 108.093 1.36 1.12  0.24

9 4-methyl-1-pentanol 125.592 1.78 1.67  0.11

10 2-hexanol 125.592 1.61 1.67 -0.06

11 2-methyl-1-pentanol 125.592 1.78 1.67  0.11

12 2-methyl-2-pentanol 125.592 1.39 1.67 -0.28

13 3-methyl-2-pentanol 125.592 1.67 1.67  0.00

14 2-methyl-3-pentanol 125.592 1.67 1.67  0.00

15 3-methyl-3-pentanol 125.592 1.39 1.67 -0.28

16 2,3-dimethyl-2-butanol 125.592 1.17 1.67 -0.50

17 4-heptanol 143.091 2.31 2.22  0.09

18 5-methyl-2-hexanol 143.091 2.19 2.22 -0.03

19 2-methyl-3-hexanol 143.091 2.19 2.22 -0.03

20 2-methyl-2-hexanol 143.091 1.84 2.22 -0.38

21 3-methyl-3-hexanol 143.091 1.87 2.22 -0.35

22 3-ethyl-3-pentanol 143.091 1.87 2.22 -0.35

23 2,3-dimethyl-2-pentanol 143.091 2.27 2.22  0.05

24 1-octanol 160.591 3.15 2.77  0.38

25 2-octanol 160.591 2.84 2.77  0.07

26 2-ethyl-1-hexanol 160.591 2.84 2.77  0.07

27 1-nonanol 178.090 3.57 3.32  0.25

28 2-nonanol 178.090 3.36 3.32  0.04

29 2,6-dimethyl-4-heptanol 178.090 3.13 3.32 -0.19

30 1-dodecanol 230.588 5.13 4.97  0.16

 31 1-octadecanol 335.584 8.22 8.26 -0.04

Average absolute deviation = 0.17
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Table 7. Log P Model based on DCW(a,EC1) – training set.

n Molecule DCW exp. calc exp.-calc.

1 ethanol 53.940 -0.31 -0.28 -0.03

2 2-propanol 56.695   0.05  0.11 -0.06

3 2-methyl-1-propanol 61.016   0.65  0.72 -0.07

4 1-pentanol 65.216   1.40  1.32  0.08

5 2-pentanol 64.212   1.14  1.18 -0.04

6 3-pentanol 64.212   1.14  1.18 -0.04

7 2-methyl-2-butanol 61.132   0.89  0.74  0.15

8 1-hexanol 68.974   2.03  1.85  0.18

9 3-hexanol 67.970   1.61  1.71 -0.10

10 2-ethyl-1-butanol 68.533   1.78  1.79 -0.01

11 4-methyl-2-pentanol 67.529   1.67  1.65  0.02

12 3,3-dimethyl-1-butanol 67.713   1.57  1.68 -0.11

13 2,2-dimethyl-1-butanol 67.713   1.57  1.68 -0.11

14 3,3-dimethyl-2-butanol 66.709   1.19  1.53 -0.34

15 1-heptanol 72.732   2.34  2.39 -0.05

16 3-heptanol 71.729   2.31  2.25  0.06

17 2,2-dimethyl-1-pentanol 71.471   2.39  2.21  0.18

18 4,4-dimethyl-1-pentanol 71.471   2.39  2.21  0.18

19 2,4-dimethyl-1-pentanol 71.850   2.19  2.26 -0.07

20 2,4-methyl-2-pentanol 68.207   1.67  1.75 -0.08

21 2,4-dimethyl-3-pentanol 70.846   2.31  2.12  0.19

22 2,3-dimethyl-3-pentanol 68.207   1.67  1.75 -0.08

23 2,2-dimethyl-3-pentanol 70.468   2.27  2.07  0.20

24 3-nonanol 79.245   3.36  3.32  0.05

25 4-nonanol 79.245   3.36  3.32  0.05

26 5-nonanol 79.245   3.36  3.32  0.05

27 1-decanol 84.007   4.01  3.99  0.02

28 1-undecanol 87.766   4.42  4.53 -0.11

29 1-tetradecanol 99.041   6.11  6.13 -0.02

30 1-pentadecanol 102.799   6.64  6.66 -0.02

31 1-hexadecanol 106.557   7.17  7.20 -0.03

Average absolute deviation = 0.09
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Table 8. Log P Model based on DCW(a,EC1) – test set.

n Molecule DCW exp. calc. exp.-calc.

1 1-propanol 57.699 0.34 0.25  0.09

2 1-butanol 61.457 0.84 0.79  0.06

3 2-butanol 60.453 0.61 0.64 -0.03

4 2-methyl-2-propanol 57.373 0.37 0.20  0.17

5 3-methyl-1-butanol 64.774 1.42 1.26  0.16

6 2-methyl-1-butanol 64.774 1.14 1.26 -0.12

7 3-methyl-2-butanol 63.771 1.14 1.11  0.03

8 2,2-dimethyl-1-propanol 63.955 1.36 1.14  0.22

9 4-methyl-1-pentanol 68.533 1.78 1.79 -0.01

10 2-hexanol 67.970 1.61 1.71 -0.10

11 2-methyl-1-pentanol 68.533 1.78 1.79 -0.01

12 2-methyl-2-pentanol 64.890 1.39 1.27  0.12

13 3-methyl-2-pentanol 67.529 1.67 1.65  0.02

14 2-methyl-3-pentanol 67.529 1.67 1.65  0.02

15 3-methyl-3-pentanol 64.890 1.39 1.27  0.12

16 2,3-dimethyl-2-butanol 64.449 1.17 1.21 -0.04

17 4-heptanol 71.729 2.31 2.25  0.06

18 5-methyl-2-hexanol 71.287 2.19 2.18  0.01

19 2-methyl-3-hexanol 71.287 2.19 2.18  0.01

20 2-methyl-2-hexanol 68.649 1.84 1.81  0.03

21 3-methyl-3-hexanol 68.649 1.87 1.81  0.06

22 3-ethyl-3-pentanol 68.649 1.87 1.81  0.06

23 2,3-dimethyl-2-pentanol 68.207 2.27 1.75  0.53

24 1-octanol 76.491 3.15 2.92  0.23

25 2-octanol 75.487 2.84 2.78  0.06

26 2-ethyl-1-hexanol 76.049 2.84 2.86 -0.02

27 1-nonanol 80.249 3.57 3.46  0.11

28 2-nonanol 79.245 3.36 3.32  0.05

29 2,6-dimethyl-4-heptanol 78.363 3.13 3.19 -0.06

30 1-dodecanol 91.524 5.13 5.06  0.07

31 1-octadecanol 114.074 8.22 8.27 -0.05

Average absolute deviation = 0.09
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Table 9. Log P Model based on DCW(a,EC2) – training set.

n Molecule DCW exp. calc. exp.-calc.

1 ethanol 14.053 -0.310 -0.32  0.01

2 2-propanol 16.110  0.050  0.10 -0.05

3 2-methyl-1-propanol 19.005  0.650  0.67 -0.02

4 1-pentanol 22.368  1.400  1.35  0.05

5 2-pentanol 21.493  1.140  1.17 -0.03

6 3-pentanol 21.713  1.140  1.22 -0.08

7 2-methyl-2-butanol 19.074  0.890  0.69  0.20

8 1-hexanol 25.000  2.030  1.87  0.16

9 3-hexanol 24.380  1.610  1.75 -0.14

10 2-ethyl-1-butanol 24.399  1.780  1.75  0.03

11 4-methyl-2-pentanol 22.916  1.670  1.46  0.21

12 3,3-dimethyl-1-butanol 23.470  1.570  1.57  0.00

13 2,2-dimethyl-1-butanol 23.725  1.570  1.62 -0.05

14 3,3-dimethyl-2-butanol 22.202  1.190  1.31 -0.12

15 1-heptanol 27.633  2.340  2.40 -0.06

16 3-heptanol 27.013  2.310  2.28  0.03

17 2,2-dimethyl-1-pentanol 27.124  2.390  2.30  0.09

18 4,4-dimethyl-1-pentanol 27.227  2.390  2.32  0.07

19 2,4-dimethyl-1-pentanol 27.243  2.190  2.32 -0.13

20 2,4-methyl-2-pentanol 24.530  1.670  1.78 -0.11

21 2,4-dimethyl-3-pentanol 26.644  2.310  2.20  0.11

22 2,3-dimethyl-3-pentanol 24.305  1.670  1.73 -0.06

23 2,2-dimethyl-3-pentanol 26.454  2.270  2.16  0.11

24 3-nonanol 32.277  3.360  3.33  0.03

25 4-nonanol 32.313  3.360  3.34  0.02

26 5-nonanol 32.313  3.360  3.34  0.02

27 1-decanol 35.529  4.010  3.98  0.03

28 1-undecanol 38.161  4.420  4.51 -0.09

29 1-tetradecanol 46.058  6.110  6.09  0.03

30 1-pentadecanol 48.690  6.640  6.61  0.03

31 1-hexadecanol 51.323  7.170  7.14  0.03

Average absolute deviation = 0.07
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Table 10. Log P Model based on DCW(a,EC2) – test set.

n Molecule DCW exp. calc. exp.-calc.

1 1-propanol 17.239 0.34 0.32  0.02

2 1-butanol 19.736 0.84 0.82  0.02

3 2-butanol 18.826 0.61 0.64 -0.03

4 2-methyl-2-propanol 16.017 0.37 0.08  0.29

5 3-methyl-1-butanol 21.808 1.42 1.24  0.19

6 2-methyl-1-butanol 22.027 1.14 1.28 -0.14

7 3-methyl-2-butanol 20.934 1.14 1.06  0.08

8 2,2-dimethyl-1-propanol 21.574 1.36 1.19  0.17

9 4-methyl-1-pentanol 24.184 1.78 1.71  0.07

10 2-hexanol 24.126 1.61 1.70 -0.09

11 2-methyl-1-pentanol 24.439 1.78 1.76  0.02

12 2-methyl-2-pentanol 21.092 1.39 1.09  0.30

13 3-methyl-2-pentanol 23.305 1.67 1.53  0.14

14 2-methyl-3-pentanol 23.170 1.67 1.51  0.16

15 3-methyl-3-pentanol 21.482 1.39 1.170  0.22

16 2,3-dimethyl-2-butanol 19.882 1.17 0.85  0.32

17 4-heptanol 27.048 2.31 2.28  0.03

18 5-methyl-2-hexanol 25.942 2.19 2.06  0.13

19 2-methyl-3-hexanol 25.838 2.19 2.04  0.15

20 2-methyl-2-hexanol 23.724 1.84 1.62  0.22

21 3-methyl-3-hexanol 23.499 1.87 1.57  0.30

22 3-ethyl-3-pentanol 25.905 1.87 2.05 -0.18

23 2,3-dimethyl-2-pentanol 24.270 2.27 1.73  0.54

24 1-octanol 30.265 3.15 2.93  0.22

25 2-octanol 29.390 2.84 2.75  0.09

26 2-ethyl-1-hexanol 29.443 2.84 2.76  0.08

27 1-nonanol 32.897 3.57 3.45  0.12

28 2-nonanol 32.022 3.36 3.28  0.08

29 2,6-dimethyl-4-heptanol 29.892 3.13 2.85  0.28

30 1-dodecanol 40.794 5.13 5.03  0.10

31 1-octadecanol 56.587 8.22 8.19  0.03

Average absolute deviation = 0.16
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The average absolute deviations for the training and test sets for the different Morgan
extended connectivity indices are displayed in Table 11.

Table 11. Average absolute deviations for the different sets.

Descriptor   Training set     Test set   Complete set

DCW(a,EC0) (a) 0.17 0.14  -

DCW(a,EC1) (a) 0.09 0.09  -

DCW(a,EC2) (a)  0.16 0.07  -

AI, X
u
m          (b) - - 0.12

(a)Present calculation
(b)Ref. 13

The analysis of results presented in Table 11 show several interesting features. The first
one is that statistical parameters are nearly the same for the three probes corresponding to each
Morgan’s index. It means that this approach is consistent (i.e. final results are not dependent of
the particular probe employed to derive fitting equations). Besides, the overall statistical results
are quite satisfactory for the different sets, although those corresponding to the training set are the
best ones. Specially important are statistical parameters corresponding to the tests set, since they
correspond to real predictive results, while those associated to the training and complete sets are
just fitting parameters.

Regarding the behavior of the three Morgan extended indices, the data in Table 1 suggests
that EC1 and EC2 are the best ones and this is confirmed when analyzing the absolute average
deviations displayed in Table 11. In fact, the average absolute deviations for test sets is 0.09 and
0.07, respectively. These figures deserve to be compared with that corresponding to the Rens’
results for the complete set, i.e. 0.12 (see Table 4 in Ref. 13), which show clearly the better
quality of present predictions with regard to those published before. In order to judge properly
these comparisons, one must take into account that Rens’ fitting equation (see Eq. 13 in Ref. 13)
depends upon two variables, while present relationships depend on just one variable. Besides,
the comparison of statistical coefficients also demonstrate the higher quality of the present equations

Conclusions
We have shown that optimization of correlation weights of local graph invariants are suitable

molecular descriptors to model the octanol/water partition coefficients of alcohols. This particular
set of flexible topological variables gives quite reliable predictions of this physicochemical property
and compares favorably with other recent calculation schemes within the realm of QSPR theory.
This finding agrees with other recent similar results for the calculation of other biological activities
and physicochemical properties, and it demonstrates the convenience of resorting to variable
molecular descriptors for prediction purposes in QSAR/QSPR theory in order to take advantage
of this possibility. As stated before, there are other options to improve fitting equations in the
regression analysis, such as to employ several variables and/or try different functional algebraic
forms for the modeling function f. In this study, it has not been necessary to  employ these
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resources to get optimal results, but they should not be ignored when applying multilinear regression
analysis within the realm of QSAR/QSPR theory.
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