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Abstract

The interrelations between empirical mass and heat transport coefficients
(diffusion, pressure diffusion, thermal diffusion and sedimentation coefficients; Dyfour,
pressure and sedimentation thermal coefficients, thermal conductivity) are discussed
for continuous binary membrane systems using Irreversible Thermodynamics and
compared with those of binary fluid systems. It is shown that only three coefficients ae
independent and that in the membrane relations the factor representing the buoyancy
effect (mass or volume correction) is absent; because these systems are always in
mechanical equilibrium, while in fluid systems in general no mechanical restrictions
exist. This feature determines important differences between both types of systems in
the case of mass and heat transports due to forces involved in the mechanical balance,
differences which are discussed in detail. On the other hand, the properties of the
coefficients of transport processes due to concentration and/or temperature gradients
are essentially the same in both types of systems.

Resumen

Las relaciones entre los coeficientes empiricos de transporte de masa y de calor
(coeficientes de difusion, de difusion por presion, de termodifusion, de sedimentacion,
de Dufour, coeficientes térmicos por presion y por sedimentacion y conductividad
térmica) se analizan para sistemas de membranas binarios continuos mediante la
Termodinamica de los Procesos Irreversibles y se comparan con las correspondientes
a sistemas fluidos binarios. Se demuestra que solo tres coeficientes son independientes
vy que en las relaciones para membranas no aparece el factor correspondiente al
empuje de Arquimedes (correcciones por masa o por volumen), pues estos sistemas
estan siempre en equilibrio mecdnico, mientras que para sistemas fluidos no existen,
en general, restricciones mecdnicas. Esta caracteristica determina importantes
diferencias entre ambos tipos de sistemas en el caso de transportes de masa y de calor
originados por fuerzas incluidas en el balance mecanico, diferencias que se discuten
en detalle, Por otra parte, las propiedades de los coeficientes de los procesos de
transporte debidos a gradientes de concentracion y/o de temperatura son
esencialmente las mismas para ambos tipos de sistemas.
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Introduction

Concentration, pressure and/or temperature gradients as well as a gravitational or
centrifugal force field originate transport of matter and of heat by direct and cross effects.
These processes may be described by empirical transport coefficients as well as by
phenomenological transport coefficients of Irreversible Thermodynamics. Furthermore,
the thermodynamic phenomenological description allows stating the interrelations
between the empirical coefficients, as the number of these is in general greater than the
number of independent phenomenological coefficients and also in terms of the Onsager
Reciprocal Relations (ORR). In fluid systems, gaseous or liquid, the transport analysis
has been given by Haase [1]. In this paper we present the analysis for continuous
membrane systems. The fundamental difference is that in fluid systems no mechanical
restrictions exist while in the interior of a membrane system a force balance (mechanical
equilibrium) must be taken into account [2,3]. This differentiating aspect has been
previously taken [4] into consideration for the formulation of the general relation
between permeability and the diffusion coefficient. The treatment is now extended to
other transport coefficients improving an earlier description also due to Haase [5]. It is
shown that the characteristics of the transport coefficients related to processes due to
driving forces involved in the mechanical balance (pressure gradient and the centrifugal
or gravitational field) are different in both types of systems, while those coefficients
related to forces not connected by the mechanical equilibrium condition (concentration
and temperature gradients) are essentially the same in these systems.

For simplicity only systems with two uncharged components will be discussed, i.e.
binary (gaseous or liquid) fluid mixtures and binary continuous membrane systems
consisting of the membrane substance and the permeating substance which forms the
pure fluid (gas or liquid) phases outside the membrane. In the following Section the
treatment given by Haase [1] for transport processes in fluid systems is reviewed, next,
processes inside the membrane systems are analysed, while in the subsequent section the
comparison is made and final results presented and discussed.

Transport processes in fluid systems
In the general situation, without any mechanical restrictions, in binary fluid
systems the molar fluxes J; (i = 1, 2) must be stated in the barycentric reference frame
(index v) and only one flux is independent. Following Haase [1] we write the empirical
flow equations for the mass flow ,J, for component 2 and for the heat flux J as follows:
x,V.. I, = —[&j{Dgradxz +&.gradP —&.gradT} (1)
p P T
diffusion  pressure thermo-
diffusion  diffusion

J, =—[A..gradx, +A,.gradP + A, .gradT| )
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Dufour pressure thermal
effect thermal conduction
effect

Equations (1)-(2) include six transport processes, each of which is characterised by one
empirical transport coefficient. The denomination of the different transport processes is
indicated below each term, denomination that also applies to the corresponding empirical
transport coefficient. x; is the mole fraction of component i, V the molar volume of the
system, p; the partial density of i, p the density of the system, P the pressure and T the
thermodynamic temperature. This scheme does not exclude the external force fields
mentioned in the Introduction. Their influence does not appear explicitly in the formulas
as they act, as it will be shown below, through a contribution to the pressure gradient.

On the other hand, the fluxes and forces of the phenomenological description are
determined by the dissipation function, which reads for the transport processes at hand as
follows [1]:

VY= JX+ 5L,X,+J] X, (>0 3)
The general forces X; (1 =1, 2) and X are defined as []
X, =M, (ngQz.r)JrFi —V,.gradP —grad , 4)
1
X, = —;.gradT (%)

Here M; is the molar mass of 1, V; the partial molar volume, p; the chemical potential and
F; a molar external mechanical force acting on component i, g the gravitational
acceleration, Q the angular velocity of the centrifuge and r the distance to the rotation
axis. gradrp indicates a isothermal-isobaric gradient.
The barycentric fluxes ,J; in (1) and (3) are given by

VJizci(vi—v) (6)
with p.V=p,.V, +p,.V,, (7)
where c; is the molar volume concentration (molarity) of i, v; and v are the local velocity

of 1 and the local barycentric velocity, respectively, and p; (= ¢; M;) the partial density of
1. Because of (7) these fluxes not independent,

Ml VJ1+M2 VJ2 :07 (8)
and inserting (8) in (3) the dissipation function y takes the form
VY= 1.X,+J,X, >0 9)

This expression defines independent flows and forces for the present case. (X, is the
conjugated barycentric molar force of the independent flux J,:

M
Xy =X, _VZ‘XI (10)

1
In fluid systems no additional mechanical forces act on the components, i.e.
Fi=0 , F=0, (11)
and inserting with this condition equation (4) in (10) gives the general expression of X;:
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X, = —EKVZ —&j.gradP +grad,, “z} (12)
P p
In the derivation of (12) the following thermodynamic relations have been used:

p;=cM; , p=p +p, (13a)
c,V,+¢c,V,=1=p,V,/M, +p,V, /M, (13b)
c,grad;, u, +c,grad;, n, =0 (13¢)

x . x 0
grad, i, = py gradx, with  py s(ﬂJ (>0) (13d)

0X, T

Equations (13c)-(13d) state important thermodynamic properties. Equation (13c) is the

Gibbs-Duhem relation and the condition u'}’ >0 of (13d) states the material phase

stability condition in binary systems.

Equation (9) states as independent fluxes ,J, and J and as conjugated independent
general forces X, and Xy. The phenomenological flow equations are therefore:
Jy=ay. X, +a, X, (14)
Jo=a, X, +a,.X, (15)
where ajx (j, k = 2, q) are the barycentric phenomenological coefficients. Equations (14)-
(15) include four coefficients; two are direct coefficients (as, aqq) and the other two are

coupling (or cross) coefficients (ayq, ag2). For these coefficients the following inequalities
are valid [1]:

v

a, >0, a, >0, a,a, >a,.a,, (16)

inequalities, which derive from the positive condition of the dissipation function

v, equation (9). Moreover, the cross coefficients follow the Onsager Reciprocity
Relation (ORR):

a,,=a, - (17)
Thus, three of these four phenomenological coefficients are independent.

By insertion of (5) and (12) in (14)-(15) and taking (13) into account the
coefficients of (1)-(2) and of (14)-(15) may be related. The results are given in Table 1.

In the foregoing description the presence of a gravitational or centrifugal field is
allowed by (4), but its effect cancels in (12). For characterising the mass and heat
transports in the sedimentation process the analysis has to be made in condition of
mechanical equilibrium [6]. The force balance vanish under these circumstances:

¢, X, +¢,X, :Ozp(g+er)—gradP = p(g+er):gradP (18)

(mechanical equilibrium)

where (4) and (13) have been used. Equation (18) shows that the general effect of the
presence of an external force field is to create, in a continuous system in mechanical
equilibrium, a pressure gradient. Since we are only interested in the relation between
transport coefficients we will analyse the sedimentation process only at isothermal (grad
T = 0) and at initial (t=0, grad x, = 0) conditions (For other details see [1]). For this
situation the flow equations (1)-(2) and (14)-(15), taking (18) into account, are:
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x, V.. 1, (gradT =0,grad, ,p, =0,t = 0) :&ﬁ(g +Q2r) =

p oV . .
M (sedimentation) (19)
= —(Vz ——zj&.azz.p(nger)
pJp
1, (gradT =0,grad, ,u, =0,t=0) =&, (g +er) =

(sedimentation thermal effect) (20)
= —(Vz —&j&.aqz.p(g + er)
pJp

In these equations the first expression corresponds to the empirical formulation, defining
the corresponding empirical transport coefficients, and the second expression
corresponds to the phenomenological formulation. In equation (19) s, is the
sedimentation coefficient of component 2 and equation (19) responds to the usual
formulation in the literature [6]. On the other hand, equation (20) serves as the
introduction and definition of the sedimentation thermal effect and its coefficient A,
effect not described so far in the literature; its existence is a natural prediction of
Irreversible Thermodynamics. Haase [1] did not consider the sedimentation process in
the present context, i.e. in non-isothermal conditions. Equations (19) and (20) allow to
derive the interpretation of s, and A, respectively, in terms of the phenomenological
coefficients ay, and agp. These results are included in Table 1.

In conclusion, for binary fluid systems of uncharged species and taking the ORR
(equation 17) into account, three independent phenomenological coefficients interpret all
the transport processes, which are described by eight empirical coefficients. Thus there
must exist five independent relations among the empirical coefficients, relations that are
analysed in a subsequent section.

Transport processes in binary membrane systems.

Let us now consider the same transport processes as in the preceding section, but in
the inside of a binary membrane system. Component 1 is now the membrane substance
forming the membrane matrix and component 2 is the mobile permeant, which forms the
pure (gas or liquid) phases outside the membrane. As has been pointed out by Schmitt
and Craig [2] and also by Silverberg [3] for a membrane exposed to external mechanical
forces there must also exist another mechanical force acting through the supporting frame
which counterbalance the former external forces and which is needed to restrain the
membrane from moving. Thus within the membrane there exists always a mechanical
equilibrium, as the mechanical response of the supporting frame adjusts itself in terms of
the applied forces. The mechanical reaction of the frame acts only on the membrane
substance, i.e. on the matrix, and not on the other components of the membrane system,;
hence

Fi#0 , F2=0, (21)
Equation (21) establishes the difference with the fluid systems (eq.11). With (4)
and (21) the mechanical balance condition in membrane systems becomes

¢, X, +¢,X, =0= p(g+er)+ch1 —gradP = p(nger)Jrch1 = gradP (22)
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(mechanical equilibrium in membrane systems)

where (13) has been used. Equation (22) shows that within the membrane systems the
sedimentation force and the pressure gradient are independent from each other, in direct
contraposition to fluid systems (equation 18).

Table 1 Relations between empirical and phenomenological coefficients

Fluid systems Process Membrane systems
a)D=x,Vp¥. (ﬂj diffusion a)D'=x,Vul L,
P
b)—=L=x,V|V,-—=% B a ressure diffusion b')D—;’ =x,V.V,L
1 2 5 o Aa p p vtk
2
¢)s, =¢,V.(M, —pV, )(Bj 92 sedimentation ¢)s, =¢,VM Ly
2 =4 2 2 . , =C, V.M,.
P € C,
D; ol P |3 o - D’ =L
d) —=-x,V.| — | thermodiffusion d)—=L=—xV.=2
T p,) T T T
e) A, = Mg)(pﬂj ag, Dufour effect ) A =3y L
1
M Ny —
f)h, (Vz __2) (pﬂj'an pressure thermal effect F)dp =V, Ly,
1
g, ( pV, ) (pﬂJ Ay sedimentation thermal effect g) A =M,.L
1
h)i,=a, /T thermal conduction h)A, =L, /T

This differentiating aspect was not taken into account in the thermodynamic-
phenomenological theory of permeation and thermo osmosis originally formulated by
Haase [5], but it has been afterwards introduced and used to derive the general
relationship between the permeability and the diffusion coefficient [4]. Let us now extend
this treatment to the other transport phenomena.

In membrane processes the mass fluxes are referred to the membrane matrix (index
1) and the empirical flow equations read now [5]:

’ ’ \72

D D
x,V.,J, ==D'gradx, + ?P.gradP —TT.gradT +c,8) Vv(g + er) (23)
1
diffusion pressure thermo- sedimentation
diffusion diffusion
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J, =—M\..gradx, —A;.gradP + ] (g + er) ~ ! .gradT (24)
Dufour pressure  sedimentation  thermal
effect thermal thermal conduction
effect effect

As in equations (1)-(2) each term in equations (23)-(24) defines the corresponding
empirical transport coefficient, which for membranes is distinguished with a prime (). In
equations (23)-(24) the terms corresponding to sedimentation are directly included as a
straightforward consequence of equation (22), terms which were not considered in the
theory developed by Haase [5].

From the phenomenological point of view the dissipation function v is still given
by equation (9), but in addition to the relation among mass flows (eq.8) we have now
also a relation among forces given by equation (22). In mechanical equilibrium
becomes independent of the reference systems used for the mass fluxes (Prigogine’s
theorem [7]) and it is convenient to express the independent mass flow of component 2
directly respect to the membrane (index 1). Thus with (22) equation (9) becomes:

V=J,,X,+], X, >0). (25)

where Jy=c,(v,—vy) (a) 1Xa=X;, (b) (26)

It is readily shown that these membrane-fixed quantities are related to the
barycentric quantities by

19 :(p/pl)sz (a) 1X2(:X2):(Pl/p) X, (b) (27)
Here equations (6)-(8), (10), (13) and (22) have been used. With (27) Prigogine’s
theorem is readily verified.

Equation (25) states that the conjugated force (;X;) corresponding to the flux ;J; is
directly X, (equation 26b), which by (21) and (4) takes the simple following form:

X, (=,X,) :Mz(gnLQZr)—V2 gradP — 'Y gradx, (28)

and the corresponding phenomenological flow equations are
J, =L, X, +L,, X, (29)
J =L X, + L, X, (30)

Lk (1, k = 2, q) are the four phenomenological coefficients of the present case, taken
relative to the membrane. These coefficients have similar properties to the barycentric
ones. They follow the ORR,
L, =L, . (31)
and the same inequalities [1],
L,>0, L, >0, L,L,>L, L, (32)

By substitution of (5) and (28) in equations (29)-(30) these equations may be
compared with the empirical equations (23)-(24). The relations among coefficients are
also given in Table 1. Again, as in the case of fluid systems; three independent
phenomenological coefficients describe all the transport processes within binary
membrane systems of uncharged components, processes that are also represented by
eight empirical coefficients. Thus here also five independent relations must exist among
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these coefficients, relations that are outlined in the next section.

It is important to point out that although the force F, is of primary significance for
the formulation of the description of the transport processes in membrane systems this
force does not appear explicitly neither in the empirical flow equations nor in the
phenomenological ones and therefore there does not exist any exigency to characterise F
with more physical details. In other words, only the acceptance of its existence is
essential. Further consequences of this will be considered later on.

Relationships among the transport coefficients

In Table 1 the relations between empirical transport coefficients and the
corresponding phenomenological coefficients in both types of systems are given. The
formulas contained in both sections of this table may be directly compared if the relations
between the phenomenological coefficients in the barycentric frame and in the membrane
fixed frame are taken into account. These relations are readily obtained by considering
equations (27) and (5) and the flow equations (14)-(15) and (29)-(30) and are the
following:

L, = (p/pl)2 a, (@), L,=a, (b)

qu = (p/p1 ) Qg = (p/pl ) Ap = qu (c)

Taking equations (33) into account it is at once concluded from Table 1 that the
empirical coefficients corresponding to processes driven by forces such as grad T and
grad x,, which are not involved in the mechanical force balance, are identical for both
type of systems. These processes are diffusion, thermo diffusion, the Dufour effect and
thermal conduction. On the other hand, the coefficients of processes such as pressure
diffusion, sedimentation and the pressure and sedimentation thermal effects, due to forces
included in the mechanical equilibrium (grad P, (g+Qz.r)), are different in both types of
system. Thus:

(33)

D=D" Dr=Dr A=A A=A (34)
Dr#Dp” sp2#s2”  Ap#Ap”  As#As (35)
In consequence the prime of the coefficients of eqs.(34) can be dropped from now on.
On the other hand, the inequalities of (35) correspond to the following relations:

D} /D, =iy /A, =V, /(V, - M, /p) (36)
sb/s, =ML /A, =M, /(M, —pV,) (37)

While in the first relation (equation 36 and equations I-b’, b, f’, f) the factor My/p
(displaced volume) is lacking in the expressions of the membrane coefficients D,” and
Ay, in the second relation (equation 37 and equations I-c’, ¢, g’, g) the factor p.V,
(displaced mass) is absent in the expressions of the membrane coefficients s,” and A"
These factors represent buoyancy corrections. The buoyancy effect does not exist in
membrane systems, as one component (the membrane substance) is immobile because of
the mechanical constraint of the supporting frame. This conclusion has interesting
consequences.

From equations (16) and (32) we know that the diagonal coefficients are always
positive, while the off-diagonal coefficients may be positive or negative with an upper
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value given by the last relations of (16) and (32). Accordingly we deduce from equations
(I-a, h) and (34) that

D>0, A, >0 (membrane and fluid systems) (38)
and from equations (I-b’, ¢’) we derive that
Dp" >0, Ap"> 0 (membrane systems) (39)

Physically equation (39) has the following significance: in membrane systems the mobile
component 2 migrates in the presence of a pressure gradient or a centrifugal field always
toward the region of lower pressure and in the direction of the centrifugal field. On the
other hand, the signs of the coefficients Dp and s, in fluid systems (equations I-b, c)
depend on the signs of (V, - My/p) and (M, - pV,), respectively. The difference (M, -
pV>) may be written as [8]

X ~ ~
M, -pV, = (%j-Mle-(\G _Vz) ) (40)

as can easily be verified with (13) and
M=xM,+x,M,, p=M/V, ¢ =x,/V, V,=V,/M, .
M is the mean molar mass of the system, V its molar volume and \71 the partial specific

volume of component i. According to (40) and equations (I-b, ¢) in fluid systems the
component of smaller partial specific volume migrates in the direction of the centrifugal
field, but goes toward the higher pressure region in the presence of a pressure gradient,
1.e.

if V,<V, then 55>0,D,<0  (fluid systems) (41)

For gaseous mixtures, as V, = V|, this behaviour corresponds to the component of greater
molar mass [1].

A similar analysis with equivalent results corresponds to the pressure and
sedimentation thermal effects, which are cross-events. From equations (I-f", g’) we
deduce that the coefficients A, and A" have always the sign of Lq», i.e.

if Lp>0 then Ap">0,A">0 (membrane systems) (42)
and from equations (I-f, g) with (40) we obtain for A, arid A, :
if V,<V,,ap>0 then Ap<0,A>0  (fluid systems) (43)

Furthermore, from equations (I-d, e), the ORR (equations 17 and 31) and (34) it follows
that

if Ly>0 then Dr>0,A.>0 (fluid and membrane systems) (44)
According to equations (1) and (23) in the case of (44) the component 2 is enriched by
thermo diffusion at the “cooler” region (fluid systems) [1] or at the “cooler” outer phase
(membrane systems) [5], while heat flows by the Dufour effect (equations (2) and (24))
downwards the concentration gradient of component 2 in both types of systems. In the
presence of a pressure gradient and/or a centrifugal field heat flows in this case (Lqq > 0)
downwards the pressure gradient and in the direction of the centrifugal field in membrane
systems (equation 42) and against the pressure gradient and in the direction of the
centrifugal field in fluid systems (equations 43), if in these systems component 2 is the
“denser” component.

Finally, the relations between empirical transport coefficients may be readily
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obtained by combining the formulas of Table 1. The results are given in Table 2, where it
is shown that there exist fen independent relations, five for each case, among these
coefficients. Four are derived in a direct way and the fifth with consideration of the ORR.
Six equations era known in the literature and the corresponding references are given in
the table, while the other four relations are new.

Table 2: Relations between empirical transport coefficients

Fluid systems | Membrane systems
A) Without consideration of the ORR:
From I-c and I-a: From I-¢" and I-a":
s, _[eVi |M,-pV, ' i eV | M,
)= g ) )= 15 )
D (xV) cuy D (xV jeuy,

general expression [9, 10] of the
Svedberg formula (1925 [11])

From I-b and I-a: From I-b" and I-a”:
b)n P :\'2_‘4 2 p b’)D—;:i
PD u PD iy
(Haase, 1950 [12]) (Haase-Timmermann, 1982 [4])
From I-f and I-e: From I-f” and I-e”:
ol ViMilp oMV,
A usy he o omy

(Haase, 1950 [12])

From I-g and I-e: From I-g" and I-e”:
d)ﬂ:_u d')ﬁz_N(Iz)
A T Ao Uy
B) With consideration of the ORR:
From I-e and I-d: From I-e” and I-d":
e) Dr _ XlX) e')—DT = Xl\(i)
TA, Ty, TA, Ty,
(Haase, 1950 [12]) (Haase, 1966 [5])

Both sets of formulas of Table 2 correspond to continuous systems and the
differences are due to the absence of the buoyancy effect in the membrane systems. So
the well-known Svedberg equation (II-a) takes for membranes the different new form II-
a’. On the other hand, equations (II-b’, ¢”) were already obtained by Haase [5] by means
of a restricting assumption, which is unnecessary, as it has been shown elsewhere [4].
Both equation (II-b’) and equation (II-c’) are perfectly general for the interior of a
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membrane. This is also true for equation (II-d’), which with its analogue for fluid
systems, equation (II-d), are new relations, as well as the coefficients A;" and A5, which
are introduced by the present paper. Furthermore, equations (II-e) and (II-e’) (see
equation (34)) are identical as thermo-diffusion and the Dufour effect are not affected by
the buoyancy effect.

Table 1 and 2 show that two mass transport coefficients are sufficient to describe
all the transport processes, besides the thermal conductivity A,. It is quite reasonable and
convenient to take as independent empirical transport coefficients the diffusion
coefficient D, the thermo diffusion coefficient Dt (or the Dufour coefficient A.) and the
thermal conductivity, as these coefficients are not affected by the buoyancy effect. In
terms of these coefficients the relations of Table 2 can be summarised in the following
schemes:

e _
D,/ (V)

D Cz(Vz_Mz/p) (Mz_pvz)
c, M(ﬁ) =< (fluid syste_ms)
D,/P S (Vz/Vl) (45)
. ¢V, M,
(membrane systems)

and
— 7\‘P _ }\’s
D, ©ORR) ) V,-M,/p M,-pV,
— = === (fluid systems)
X,V M(zz) A AL (46)
V M
(membrane systems)

Thus the knowledge of D and D (or A.) allows calculating, with the help of Irreversible
Thermodynamics, all the other transport quantities. Moreover, some thermodynamic
properties of the systems such as V5 and p,,™ must be measured independently. In the
case of membranes, ;™ may be obtained from the sorption isotherm of the permeant.
An interesting alternative for the physical interpretation of the coefficients of
heat transport induced by a mass flux may be obtained with the introduction of the

quantity "Q,, the (internal) heat of transport of component 2, which is defined by [14, 5]:
(ORR)

Q.= L, /Ly = [J 2] X, =0 (47)

This definition holds for both types of systems, but it should be noted that in membranes
a differentiation between “external” and “internal” heat of transport must be made [5].
The second expression of (47), derived with equations (i4-15), (29- 30) and (33) and the
ORR, allows to recognise immediately the physical significance of *Q,. In terms of “Q,
and using the expressions of Table 1 the relations between the empirical transport
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coefficients are:

( _ TR _ T
Q u® D, ORR) (VZ_M2/p)'D (Mz—sz).D
e e e (fluid systems)
x,V x,V.D D (48)
_ _uS
v,b M,D
(membrane systems)
and
=A,.P/D, =(V,/V). X, /s,
‘ Q_z o (fluid systems) 49
x,V =M, P/D,=(V,/V).\ /s, 49)

(membrane systems)

where equations (49) are particularly simple and clear.

As has been mentioned in the preceding paragraph, there exist “external” and
“internal” transport quantities in membrane systems [5]. “Internal” membrane
coefficients are those discussed in this paper (equations 23-24; Table 1) and “external”
coefficients are such as the mechanical (“hydraulic”) and the thermomechanical
(thermoosmotic) permeabilities, the mechanocaloric (osmotic thermal) coefficient and
the external thermal conductivity [5, 15]. The external quantities corresponding to the
gravitational or centrifugal effect have not been defined so far in the literature.

The external quantities can be interpreted in terms of the internal coefficients. In
particular permeation is related to diffusion and pressure diffusion inside the membrane
[5] and by equation (II-b’) to diffusion alone [4]. By equation (II-a") the permeability A,
of component 2 may be related also to the membrane sedimentation coefficient s,". Thus
we have:

Iy _ Vi D Vs
APl coa1=0 XV M(zé) ¢V, M, ,
where the first expression has been obtained in Ref.[4] and the second one is derived by
insertion of equation (II-¢”) in the former. V;* is the molar volume of the permeant 2 in
the pure phases outside the membrane [4]. The first relation, which is the general formula
connecting permeability and diffusion, has been discussed already elsewhere [16] and
satisfactorily tested by comparing direct measured values of permeabilities of artificial
membranes with values calculated using diffusion and sedimentation data of
concentrated polymer solutions [17, 18]. On the other hand, no experimental data of s;’
are available, so far the author is aware, to test the second expression. As an extreme
example, this expression describes the action of forcing out the water contained in a
porous plug or a swollen sponge by a sudden quick shaking. In general this water flux
can be described by the following formula:

J,=q.J,=qAY X, (51)

A2 = (50)
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where I, represents the total flow through the cross section q of the membrane, A, a
centrifugal permeability and X, a general centrifugal force, which is equal to (g + Q7.r)
in the sedimentation experiments with r >> J, where J is the thickness of the membrane.
By comparing (51) with the last term of equation (23) we obtain:

AV =c,sl/c)V, (52)
From (50) and (52) the relation between A, ant A, follows immediately:
A, /V; =AY /M, (53)

Thus, experimental measurements of s, in combination with equations (52)-(53) provide
an interesting alternative for the determination of membrane permeability.

Conclusions

The foregoing analysis has shown the differences between transport quantities in
membrane and fluid systems. These consist in the absence of the buoyancy effect in
membrane systems. These systems are always in mechanical equilibrium and it is a
characteristic that an additional force, the mechanical reaction of the supporting frame, is
to be taken into account to guarantee this equilibrium. Now, as already stated at the end
of Section 3, it is not necessary to describe this force with further details as it does not
appear explicitly in the flow equations. This fact raises the question of whether the
formulas obtained for membrane systems are restricted only to plane membranes
supported by en external frame or if they are completely general and valid for any type of
membrane systems, including systems such as vesicles or red blood cells, par example. In
these cases no rigid support exists which compensates the unbalanced stresses of the
membrane substance and a final “globular” configuration is found, which also represents
a mechanical equilibrium situation. The tensions existing in different directions in the
now curved membrane network are reduced in such a situation to a minimum with a
finite resultant perpendicular to the surfaces which compensates the external force
difference between both sides of the membrane and maintains mechanical balance within
the membrane. This final tension in the network strands, the nature of which is
viscoelastic, is now representative of F; in equation (22) and it must also not be described
with further details [19]. Thus, our transport description also applies to these membranes
and the answer to the question raised above is affirmative in the sense that our membrane
formulas are completely general and valid for any type of membrane systems.

In following papers we will consider: (a) The extension of the foregoing
description to ternary systems, which for membrane systems corresponds to the usual
case of two permeants, the solvent and a solute. This case, normally described in terms of
friction coefficients, will now be treated in terms of mobility coefficients as well as in
terms of internal empirical transport coefficients. (b) A detailed analysis of the general
permeability formula [4, 16] (first expression of equation (50)), where the effect of p,,™
is very important. This permeability formula is only well known at the limit c; — 0 (ideal
dilute solution, Henry region). Under these conditions, xop,™ — RT and taking into
account that ¢, = x,/V equation (50) takes the following, already classical, limiting
forms:
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a) permeation of pure gases:
V;=RT/P

o_ 1 H o
lim A,=AS=c,V;D°/RT - Ay=kD
230 b) permeation of pure liquids: (54)

. .
Vo=iiey

—  AS=k,D°/RT

where k,'! (=c,/P) is the Henry constant and k; (=c,/c,") is a partition constant. The index
(°) indicates limiting values.
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