DERIVATIZACIÓN QUÍMICA Y ELECTROQUÍMICA DE 1,2,5-TIADIAZOL 1,1-DIOXIDOS 3,4-DISUSTITUIDOS: NITRILOS Y DERIVADOS METILADOS

Nelson Rodríguez Arroyo, <u>Jaime Fernando Martínez Suárez</u>, José Alberto Caram María Virginia Mirífico*.

*mirifi@inifta.unlp.edu.ar

RESUMEN

INTRODUCCIÓN

Los derivados del heterociclo 1,2,5-tiadiazol presentan un valor real como intermediarios en química fina, como moléculas con propiedades farmacológicas agroquímicas, blanqueadores de prendas textiles, como productos intermediarios preparaciones en farmacéuticas tienen aplicaciones У tecnológicas.[1,2] Los 1,2,5-tiadiazol-1,1-dióxidos (T) se caracterizan por ser aceptores de electrones y actuar como reactivos electrofílicos debido a la presencia en su estructura del grupo >NSO2N<, fuertemente atractor de electrones.[3]

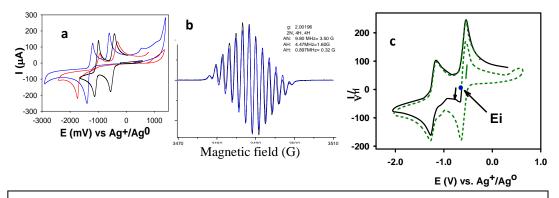
Figura 1. Fórmulas estructurales de los derivados T estudiados

Nuestro grupo de trabajo ha estudiado diferentes aspectos de la química, la fisicoquímica y la electroquímica de los derivados 1,1-dióxidos y 1-óxidos.[4,5] Entre otros, hemos informado sobre reacciones de adición de nucleófilos nitrogenados orgánicos al/a los doble/s enlace/s >C=N- del heterociclo, [3,6-9] y hemos preparado un nuevo α-aminonitrilo derivado de 3,4-difenil-1,2,5-tiadiazol-1,1-dióxidos por adición de KCN.[9] Recientemente hemos informado sobre el nuevo uso de derivados de T como inhibidores de la corrosión de metales.[10,11]

En este trabajo se presentan resultados parciales del estudio de derivatización química y electroquímica de fenantro [9,10c]1,2,5-tiadiazol-1,1-dióxidos (TROJO) y pireno[4,5c]1,2,5-tiadiazol-1,1-dióxidos (TPYR) (*Figura 1*) por reacción con cianuros inorgánicos (M⁺CN⁻) y por generación electroquímica de especies dianiónicas (nucleofílicas) suceptibles de ser alquiladas en presencia de halogenuros de alquilo (RX).

EXPERIMENTAL

Las reacciones de **T** con M⁺CN⁻ ((M⁺: K⁺, Na⁺ y Li⁺) se llevaron a cabo en solución de DMF seca, a temperatura ambiente. El avance de las reacciones se siguió por voltametría cíclica (VC) y en algunos casos por espectrofotometría UV-Vis. Para las medidas electroquímicas se usó un potenciostato PAR 273 y una celda electroquímica convencional (ET: Cvítreo; CE: Pt; ER: Ag⁺/Ag^o. (AgNO₃ 0,1 M en ACN). Para las medidas UV-Vis se usó un espectrofotómetro Shimadzu UV-1800. Algunos productos de reacción se identificaron por difracción de rayos x. Se trabajó en una campana con guantes, bajo atmósfera de nitrógeno seco.


RESULTADOS

Derivatización química

El estudio VC del avance de las reacciones TROJO y TPYR con M⁺CN⁻ (M⁺⁻ K⁺, Na⁺ o Li⁺) mostró que ambos **T** reaccionan por dos vías diferentes según la naturaleza del M⁺CN⁻.

a) Adición del nucleófilo a los dobles enlaces >C=N- del heterociclo ($M^+ = K^+$, Na^+) (*Figura 2a*). El agregado de CH_3 I a la solución final de reacción permitió evidenciar

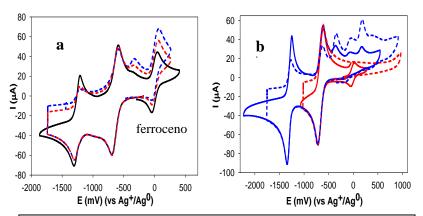

- la formación del *alfa*-aminonitrilo dimetilado sobre los Nitrogenos heterocíclicos derivado de TROJO (T $(CN)_2Me_2$).
- b) Reducción de ambos **T** para generar los aniones radicales (**T**⁻) correspondientes. La formación de T⁻ se confirmó por EPR (*Figura 2b*), VC (*Figura 2c*), y UV-Vis. Experiencias VC realizadas en presencia de CH₃I mostraron que **T**⁻ no reacciona químicamente con el RX.

Figura 2. VsCs (barridos catódicos) de solución 5,0 mM TROJO en DMF (—). **a)** con NaCN 30 mM: (—) t = 15 min; (—) t = 170 min. ET: Cvítreo; CE: Pt; ER: Ag+/Ag°; ES: HPFTBA. **b)** Espectro ESR (banda 9,7 GHz) para una solución 4,80mM TPYR + 30mM LiCN en DMF (—) y el espectro ESR simulado. **c)** Barridos anódico (—) y catódico (—) a partir del potencial de reposo (Ei) para una solución 7,4 mM de TROJO + 74 mM en DMF para t = 120 min.

Electrofuncionalización

Se electrogeneraron dianiones paradas de potencial a un potencial más negativo que correspondiente al segundo pico catódico (pc2: TPYR a -1,3 y TROJO a -1,4V). Se trabajó en ausencia presencia de exceso de RX en el medio electrolítico (RX: CH₃I, C₂H₅Br, C₂H₅I y BrCH₂CH₂Br). En las **Figuras** 3a.b muestran VsCs típicos correspondientes a la metilación **TPYR** TROJO. Estos estudios analíticos

Figura 3. VC de soluciones 3 mM de TPYR y de TROJO en DMF. **a)** VC de TPYR, barridos catódicos: (—) sin parada de potencial en ausencia de CH₃I, (---) parada de potencial a -1,48V por 15 seg en presencia de CH₃I, (---) parada de potencial a -1,48V por 60 seg en presencia de CH₃I; **b)** VC de TROJO, barridos catódicos: (—) sin parada de potencial en presencia de CH₃I, (---) con parada de potencial a -1,48 V por 60 seg en presencia de CH₃I, (—) barrido hasta -0,75 V sin parada de potencial en presencia de CH₃I, (---) con parada de potencial a -0,75 V por 60 seg en presencia de CH₃I. ET: Cvítreo; CE: Pt; ER: Ag⁺Ag⁰: ES: NaClO₄.

permitieron seleccionar las condiciones experimentales más convenientes para llevar a cabo ensayos preparativos. Se realizaron electrólisis preparativas a potencial constante (EPC) con el objetivo de acumular electroquímicamente **T**⁼, y así obtener, por posterior adición de RX, los compuestos alquilados.

CONCLUSIONES

El tipo de reacción de los **T** con cianuros inorgánicos (M⁺CN⁻) en solución de DMF está relacionado con la naturaleza del catión. El anión CN⁻ se adiciona a los dobles enlaces >C=N- del heterociclo para M⁺ = K⁺ y Na⁺, mientras que para M⁺ = Li⁺ actúa como agente reductor formando los aniones radicales **T**⁻. Los **T**⁻ estudiados no reaccionan químicamente con CH₃I. Este aspecto del trabajo ha posibilitado avanzar y profundizar estudios previamente informados en la literatura.[9] Las bases electrogeneradas **T**⁼ posibilitan reacciones de adición electrofílica al anillo de 1,2,5-tiadiazol-1,1-dióxidos. Esta clase de adiciones electrofílicas a los derivados **T** no está informada en la literatura.

BIBLIOGRAFIA

- a) Linder T., Sutherland T.C, Baumgartner T., Chem. Eur., J., 16, (2010) 7101. b)
 Naiwa. H.S. (Ed), Handbook of Organic Conductive Molecules and Polymers.
 Wiley-VCH, Chichester, UK, (1997)
- 2. Guangwu L., Chong K., Xue G., Jicheng Z., Cuihong L., Youchun C., Huanli D., Wenping H., Fenghong L., Zhishan B., *Macromolecules*, **47** (2014) 4645.
- 3. Caram J.A., Piro O.E., Castellano E.E., Mirífico M.V. y Vasini E.J., *J. Phys. Org. Chem.*, **19** (2006) 229.
- 4. Castellano E.E, Piro O.E, Caram J.A, Mirífico M.V, Aimone S.L, Vasini E.J, Marquez-Lucero A, Glossman-Mitnik D., *J. Mol. Struct.*, **604** (2002) 195.
- 5. Aimone S.L., Mirífico M.V, Caram J.A., Glossman D.M, Piro O.E, Castellano E.E., Vasini E.J., *Tetrah. Lett.*, **41** (2000) 3531.
- Caram J.A., Mirífico M.V., Aimone S.L., Vasini E.J., J. Phys. Org. Chem., 16 (2003) 220.
- 7. Caram J.A., Piro O.E., Castellano E.E., Mirífico M.V., Aimone S.L., Vasini E.J., *J. Phys. Org. Chem.*, **17** (2004) 1091.
- 8. Mirífico M.V., Caram J.A., Vasini E.J., Piro O.E., Castellano E.E., *J. Phys. Org. Chem.*, **22** (2009) 163.
- 9. Caram J.A., Mirífico. M.V., Piro O.E., Castellano y Vasini E.J. *J. Phys. Org. Chem.*, **20** (2007) 1081.
- 10. Grillo C.A., Mirífico M.V., Morales M.L., Reigosa M.A., Fernández Lorenzo de Mele M. *J. Hazard. Mat.*, 170 (2009) 1173.
- 11. Banera M.J., Caram J.A., Gervasi C.A., Mirífico M.V. J. Appl. Electrochem. 44 (2014) 1.