PUNTO FINAL DE LA REACCIÓN FENTON DETERMINADO MEDIANTE EL POTENCIAL DE ÓXIDO-REDUCCIÓN (POR)

Eduardo A. Bernatené¹, Daniel Endler² y Arturo A. Vitale¹

¹Instituto IBIMOL (ex PRALIB) (UBA y CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, C1113AAD Ciudad Autónoma de Buenos Aires. Argentina. ²Barrozero S.R.L. E-mail: avitale@ffyb.uba.ar

INTRODUCCIÓN

En el tratamiento de las aguas residuales industriales, la regulación en tiempo real de las condiciones operativas (dosis de los reactivos, temperatura, pH, etc.) depende de las características del influente y del objetivo a lograr en el perfil del efluente. Controlando estas variables, se puede lograr la reducción de los costos operativos. El Potencial de Óxido-Reducción (POR) es utilizado en el control de procesos biológicos y de oxidación química en los residuos líquidos industriales. Los procesos de la familia Fenton generan el radical hidroxilo (*OH) de alto estándar de potencial oxidativo (2,8 V), que puede incrementar los valores de POR dentro del reactor. Además, un exceso de H₂O₂ puede atrapar al *OH, formando el radical hidroxiperoxil (HO₂*) de menor reactividad. El consumo de H₂O₂ es considerado como un factor que afecta el costo de la operación y su control puede indicar la depresión o la acumulación de H₂O₂.

MATERIALES Y MÉTODOS

Se obtuvieron muestras de efluentes líquidos en las cámaras de inspección de veinte empresas. Las muestras se almacenaron en heladera a 5-6 °C y se procesaron dentro de las 24 horas de colectadas. Se hicieron tres réplicas de cada tratamiento y el proceso consistió en:

Etapa I: En el efluente crudo se determinaron el pH, POR y DQO (Demanda Química de Oxigeno). Se ajustó a pH=3 para cumplir con las condiciones ácidas de un proceso Fenton.

Etapa II: Se procedió a llevar a cabo la reacción, iniciando la misma con pequeñas cantidades de Fe²⁺ y H₂O₂, en presencia de magnetita cristalina como catalizador (tamaño de partícula: 120-150 μm), durante 24 hs. Se controló continuamente el POR y el pH del sistema mediante electrodos específicos. Se agregó H₂O₂ para mantener la reacción dentro de los valores de Fenton.

Etapa III: Cuando se observó estabilidad en el valor de POR, se suspendió la entrega de H_2O_2 y se calculó la relación Fe^{2+}/H_2O_2 . Luego se ajustó el pH a los valores de vuelco (pH=7-10) y se determinó el DQO del efluente.

RESULTADOS

En la **Tabla 1** se observan los resultados logrados al tratar los efluentes mediante este procedimiento. Los porcentajes de DQO residual, fueron iguales o inferiores al 26% y los valores de DQO_f se ubicaron dentro de lo exigido por la reglamentación vigente. Además se indica la relación Fe/H_2O_2 obtenida al finalizar el proceso oxidativo.

Tabla 1: Valores de DQO (inicial, final, residual); de POR (inicial y final) y relación Fe/H_2O_2 en el punto final del tratamiento.

Producción	DQOi	DQOf	DQOr	ORPi	ORPf	Fe/H2O2
Imprentas	5400	685	13	78	517	1/15
	5850	670	12	65	582	1/10
Galvanoplastía	5200	665	13	299	561	1/10
	4800	670	14	385	589	1/5
	3800	675	18	287	562	1/10
	3000	455	15	357	451	1/4
Curtiembres	2800	80	3	275	589	1/4
	3500	110	3	275	553	1/8
Frigoríficos	6600	610	9	267	623	1/6
	6800	640	10	341	572	1/6
	2710	420	16	74	581	1/6
	1900	480	25	175	595	1/3
Bizcochos	6600	695	11	205	489	1/8
Lácteos	3400	210	6	385	545	1/5
Lab. Veterinarios	2500	650	26	75	494	1/5
	3500	335	10	36	545	1/5
Cosméticos	6500	680	11	455	463	1/13
	9000	600	7	44	575	1/23
Aditivos Alim.	7000	500	7	252	566	1/24
	5000	500	10	423	568	1/8

 $\begin{aligned} \mathsf{DQOi} &= \mathsf{DQO} \ \mathsf{inicial} \ \mathsf{(mg/I)} \\ \mathsf{DQOf} &= \mathsf{DQO} \ \mathsf{final} \ \mathsf{(mg/I)} \end{aligned} \end{aligned} \quad \begin{aligned} \mathsf{PORi} &= \mathsf{POR} \ \mathsf{inicial} \ \mathsf{(mV)} \\ \mathsf{PORf} &= \mathsf{POR} \ \mathsf{final} \ \mathsf{(mV)} \end{aligned}$

DQOr = DQO residual (%) Fe/H2O2 = relación de reactivos en el punto

final (m/m)

Los valores de POR registrados cuando se visualizó una estabilización del mismo oscilaron entre 451 y 623 mV y fueron propios de cada efluente presentando diferencias inter- e intraactividad. También la relación Fe/H₂O₂ presentó valores propios para cada caso analizado. En todos los casos se observó que cuando el valor de POR se mantenía constante, el valor de DQO era inferior a 700 mg/l.

CONCLUSIONES

Los ensayos realizados presentan el papel potencial del control "en línea" del POR como un parámetro clave en la determinación del punto final del proceso Fenton. El análisis del perfil de POR, puede ser utilizado para un control apropiado de la dosis de H₂O₂. Estas particularidades, indican la necesidad de realizar ensayos previos en el laboratorio para luego realizar los procedimientos a escala. El seguimiento del valor del POR, probó ser un parámetro económico, flexible y efectivo para el control exitoso de los sistemas de tratamiento tipo Fenton.

REFERENCIAS

Peña, R.C.; Silva, V.O.; Quina, F.H.; Bertotti, M. 2012. Hydrogen peroxide monitoring in Fenton reaction by using a ruthenium oxide hexacyanoferrate/multiwalled carbon nanotubes modified electrode. *Journal of Electroanalytical Chemistry* **686**: 1-6.

Ruey-Fang, Y.; Chuang-Hung, L., Ho-Wen, C., Wen-Po Ch., Ming-Chien, K. 2013. Possible control approaches of the Electro-Fenton process for textile wastewater treatment using on-line monitoring of DO and ORP. *Chemical Engineering Journal* **218**: 341–349.

Shi-long, H.; Li-ping, W.; Jie, Z.; Mei-feng, H. 2009. Fenton pre-treatment of wastewater containing nitrobenzene using ORP for indicating the endpoint of reaction. *Procedia Earth and Planetary Science* 1: 1268–1274.

Wu, H. y Wang, S. 2012. Impacts of operating parameters on oxidation–reduction potential and pretreatment efficacy in the pretreatment of printing and dyeing wastewater by Fenton process. *Journal of Hazardous Materials* **243**: 86-94.